
<Insert Picture Here>

JSR-335 Update for JCP EC Meeting, January 2012

Alex Buckley

Oracle Corporation

The following is intended to outline our general

product direction. It is intended for information

purposes only, and may not be incorporated into any

contract. It is not a commitment to deliver any

material, code, or functionality, and should not be

relied upon in making purchasing decisions.

The development, release, and timing of any

features or functionality described for Oracle’s

products remains at the sole discretion of Oracle.

Why closures for Java?

• Help Java programmers easily harness the power of today’s

multicore processors

• In Java SE 7, the serial code and the parallel code for a given

computation look completely dissimilar – a barrier to parallelism

• The idiom of internal iteration is key to reducing this barrier

• Closures enable the development of rich, parallel-friendly libraries

by supporting internal iteration

• This is not controversial – all other mainstream languages have

already embraced closures (C#, VB, JavaScript, Ruby, Obj-C…)

Example: A simple query

“In a music library, get the set of ‘favorite’ albums where at least

 one track is highly rated”

class Library {

 Set<Album> albums;

 Set<Album> favoriteAlbums() {

 // TODO

 }

}

class Album {

 String title;

 List<Track> tracks;

}

class Track {

 String title;

 String artist;

 int rating;

}

Identifying a favorite album

// Set hasFavorite to true if some track in album a is rated >= 4

boolean hasFavorite = false;

for (Track t : a.tracks) {

 if (t.rating >= 4) {

 hasFavorite = true;

 break;

 }

}

Identifying a favorite album

// Set hasFavorite to true if some track in album a is rated >= 4

boolean hasFavorite = false;

for (Track t : a.tracks) {

 if (t.rating >= 4) {

 hasFavorite = true;

 break;

 }

}

External iteration

• Client controls iteration

• Inherently serial: iterate
from beginning to end

• Lots of boilerplate

• Not thread-safe because
business logic is stateful

Identifying a favorite album with lambdas

// Set hasFavorite to true if some track in album a is rated >= 4

boolean hasFavorite = false;

for (Track t : a.tracks) {

 if (t.rating >= 4) {

 hasFavorite = true;

 break;

 }

}

boolean hasFavorite = a.tracks.anyMatch(t -> t.rating >= 4);

Identifying a favorite album with lambdas

// Set hasFavorite to true if some track in album a is rated >= 4

boolean hasFavorite = false;

for (Track t : a.tracks) {

 if (t.rating >= 4) {

 hasFavorite = true;

 break;

 }

}

boolean hasFavorite = a.tracks.anyMatch(t -> t.rating >= 4);

Internal iteration

• Iteration / filtering / accumulation
controlled by the library

• Not inherently serial

• Thread-safe because business
logic is stateless in the client

Making a set of favorite albums

// Initialize favs as a set of favorite albums drawn from albums

Set<Album> favs = new HashSet<>();

for (Album a : albums) {

 if (a.tracks.anyMatch(t -> (t.rating >= 4)))

 favs.add(a);

}

Making a set of favorite albums

// Initialize favs as a set of favorite albums drawn from albums

Set<Album> favs = new HashSet<>();

for (Album a : albums) {

 if (a.tracks.anyMatch(t -> (t.rating >= 4)))

 favs.add(a);

}

Set<Album> favs =

 albums.filter(a -> a.tracks.anyMatch(t -> t.rating >= 4))

 .into(new HashSet<>());

Loops v. Lambdas

Set<Album> favs = new HashSet<>();

for (Album a : albums) {

 boolean hasFavorite = false;

 for (Track t : a.tracks) {

 if (t.rating >= 4) {

 hasFavorite = true;

 break;

 }

 }

 if (hasFavorite) favs.add(a);

}

Set<Album> favs =

 albums.filter(a -> a.tracks.anyMatch(t -> t.rating >= 4))

 .into(new HashSet<>());

Loops v. Lambdas
Explicit but unobstrusive parallelism

Set<Album> favs = new HashSet<>();

for (Album a : albums) {

 boolean hasFavorite = false;

 for (Track t : a.tracks) {

 if (t.rating >= 4) {

 hasFavorite = true;

 break;

 }

 }

 if (hasFavorite) favs.add(a);

}

Set<Album> favs =

 albums.parallel()

 .filter(a -> a.tracks.anyMatch(t -> (t.rating >= 4)))

 .into(new ConcurrentHashSet<>());

The real challenge: Library evolution

• If Java had closures in 1996, APIs would look very different

• Adding closures now, but not evolving core APIs to support them,

would be foolish

• The older APIs get, the more obvious the gaps

• It is difficult to add entirely new core libraries because the old interfaces (e.g. List)

permeate non-core libraries

• Historically, evolving interface-based APIs has been a problem

• Virtual extension methods provide a mechanism for controlled

evolution of libraries over time

• Puts burden of evolution on API designers/implementers, not users

JSR-335 features

• Language features

• Lambda expressions (closures) with “SAM conversion”

• Method references

• Virtual extension methods

• Upgraded libraries to use new language features

• Bulk data operations on Collections

e.g. filter, map, reduce…

• “Point lambdafication” of java.util / java.io / java.net

e.g. “run this closure for every line of a file”

• Synergy with JSR-292 VM enhancements

JSR-335 status

• EDR #1 completed December 2011

• Specification covers lambda expressions, SAM conversion, method references

• Prototype of RI compiler available in OpenJDK Project Lambda

• EDR #2 targeted for April 2012

• Adds type inference and virtual extension methods

• EDR #3 targeted for Summer 2012

• Adds bulk data operations

• Initial design is starting now in JSR 166 EG

• API specification is ultimately expected to go through SE 8 Umbrella JSR

