
GS Collections and Java 8

GS Collections and Java 8
JCP Executive Committee F2F Meeting – London, UK

May 13-14, 2014

5/12/2014 © 2014 Goldman Sachs. All rights reserved.

These materials (“Materials”) are confidential and for discussion purposes only. The Materials are based on information that we consider reliable, but Goldman
Sachs does not represent that it is accurate, complete and/or up to date, and it should not be relied on as such. The Materials do not constitute advice nor is
Goldman Sachs recommending any action based upon them. Opinions expressed may not be those of Goldman Sachs unless otherwise expressly noted. As a
condition to Goldman Sachs presenting the Materials to you, you agree to treat the Materials in a confidential manner and not disclose the contents thereof
without the permission of Goldman Sachs.

• Open source Java collections framework
developed in Goldman Sachs
– In development since 2004
– Hosted on GitHub w/ Apache 2.0 License

• github.com/goldmansachs/gs-collections

• GS Collections Kata
– Internal training developed in 2007
– Taught to > 1,500 GS Java developers
– Hosted on GitHub w/ Apache 2.0 License

• github.com/goldmansachs/gs-collections-kata

What is GS Collections?

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections-kata

1. Extensive use of collections across all of our Java code
2. Fast response times needed so collections in memory

– Optimizations for both space and speed

3. Constantly changing environment
– Less boilerplate code to maintain is more desirable so we can focus

on business opportunities

4. Usage of patterns improves code review speed and quality
– Great support in modern IDE’s for pattern based operations

5. Needed features from all of the major collection libraries
– We get to have that without having to manage the vastness of that

diversification

Why did we build GS Collections?

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

1. Object-Oriented Design + Functional API
2. Rich Lambda-Ready Iteration API

– Fluent API that works great with Java 8

3. Memory Efficient Containers
4. Completely compatible with JDK interfaces
5. Additional Object Containers not in JDK
6. Primitive Containers
7. Immutable Containers
8. Parallel Eager and Lazy iteration
9. Similar to Smalltalk (api) and Scala (hierarchy)

Why do we use GS Collections?

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

• Do you use GS Collections today?
• Is there anything that keeps you from using GS

Collections in your code bases?
• What are our plans for Java 9/10 for the Java

Collections framework?
– Will anyone sponsor a JSR for Collections 2?
– Should GS sponsor a JSR for Collections 2?

• Should a Java Collections 2 implementation “Rock
Hard or Go Home”?
– Full primitive support, immutable containers, multimaps,

bags, bimaps, eager/lazy, serial/parallel, etc.

Questions for this group

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

5/12/2014

Framework Comparisons

© 2014 Goldman Sachs. All rights reserved.

Features GSC 5.0 Java 8 Guava Trove Scala

Rich API

Interfaces Readable, Mutable,
Immutable,
FixedSize, Lazy

Mutable,
Stream

Mutable,
Fluent

Mutable Readable,
Mutable,
Immutable, Lazy

Optimized Set & Map (+Bag)

Immutable Collections

Primitive Collections (+Bag,
+Immutable)

Multimaps (+Bag,
+SortedBag)

(+Linked) (Multimap trait)

Bags (Multisets)

BiMaps

Iteration Styles Eager/Lazy,
Serial/Parallel

Lazy,
Serial/Parallel

Lazy,
Serial

Eager,
Serial

Eager/Lazy,
Serial/Parallel
(Lazy Only)

GS Collections: Design Concepts

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

RichIterable

Readable
Interface

Mutable
Interface

Immutable
Interface

Bag, Set, List,
Stack, Map,

etc.

MutableBag,
MutableList,

etc.

ImmutableBag,
ImmutableList,

etc.

GS Collections: RichIterable API

© 2014 Goldman Sachs. All rights reserved.

RichIterable interface: 50+ Unique Methods, 75+ Total Methods (w/overloads)
λ aggregateBy λ flatCollect notEmpty
λ aggregateInPlaceBy λ forEach λ partition
λ allSatisfy λ forEachWith λ reject
λ anySatisfy λ forEachWithIndex λ rejectWith

appendString getFirst λ select
asLazy getLast λ selectWith
chunk λ groupBy size

λ collect λ groupByEach toArray
λ collectIf λ injectInto toBag
λ collectWith isEmpty toList

contains Iterator λ toMap
containsAll makeString toSet
containsAllArguments λ max λ toSortedList / toSortedListBy
containsAllIterable λ maxBy λ toSortedMap

λ count λ min λ toSortedSet / toSortedSetBy
λ detect λ minBy zip
λ detectIfNone λ noneSatisfy zipWithIndex

5/12/2014

Iteration Style GSC Example JDK 8 Example

Serial Eager
(collect)

List<Address> addresses =

 people.collect(Person::getAddress);

Serial Lazy
(collect / map)

LazyIterable<Address> addresses =
 people.asLazy()
 .collect(Person::getAddress);

Stream<Address> addresses =
 people.stream()
 .map(Person::getAddress);

Serial Lazy
(collect / map,
toList)

List<Address> addresses =
 people.asLazy()
 .collect(Person::getAddress)
 .toList();

List<Address> addresses =
 people.stream()
 .map(Person::getAddress)
 .collect(Collectors.toList());

Parallel Eager Collection<Address> addresses =

 ParallelIterate.collect(

 people, Person::getAddress);

Parallel Lazy ParallelListIterable<Address> addresses =

 people.asParallel(executor, batchSize)

 .collect(Person::getAddress);

Stream<Address> addresses =
 people.parallelStream()
 .map(Person::getAddress);

Eager versus Lazy Iteration

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

GS Collections in terms of lines of code

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

• 295,036 lines of Java code
• 9,959 lines of Scala code
• 76,240 lines of StringTemplate templates

• Total Java code after code generation:

–1,438,477 lines of Java code your developers
don’t have to write and can use for free

Reducing code using lambdas

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

• Converted nearly all of our anonymous inner
classes in tests to lambdas and method
references.

• 9% reduction of code in our unit test module
– Dropped from 105,206 LOC to 95,775

• Many examples of code savings from Java 8
can be found in our unit test suite module in
GitHub.
– Possibly one of the first large scale usages of Java

8 lambdas and method references in a code base

https://github.com/goldmansachs/gs-collections/tree/master/unit-tests/src/test/java/com/gs/collections/impl
https://github.com/goldmansachs/gs-collections/tree/master/unit-tests/src/test/java/com/gs/collections/impl

• UnifiedMap – built without using Entry
objects.

• UnifiedSet – not built using a map.
• Empty should be empty.
• Primitive Collections.
• Memory efficient containers for small-sized

collections (>1 and < 11).

 4/26/2014 © 2014 Goldman Sachs. All rights reserved.

Memory Optimization

• For every put, HashMap creates an Entry
object.

• UnifiedMap stores keys and values in alternate
slots on a single array.

• Consecutive memory locations are faster to
access.

4/26/2014 © 2014 Goldman Sachs. All rights reserved.

UnifiedMap

0

5

10

15

20

25

30

35

40

45

Si
ze

 (M
b)

Elements

Mutable Map

JDK HashMap

GSC UnifiedMap

Trove THashMap

JDK Hashtable

4/26/2014 © 2014 Goldman Sachs. All rights reserved.

Save 50% Memory with the GSC UnifiedMap

• HashSet uses HashMap as its backing
collection.

• For every add, an Entry object is created with
the element as key and null value.

• UnifiedSet uses an array as its backing
collection.

4/26/2014 © 2014 Goldman Sachs. All rights reserved.

UnifiedSet

0

10

20

30

40

50

60

Si
ze

 (M
b)

Elements

Mutable Set

JDK HashSet

GSC UnifiedSet

Trove THashSet

4/26/2014 © 2014 Goldman Sachs. All rights reserved.

Save 400% Memory with the GSC UnifiedSet

• What are primitives?
• Not everything in java is an Object.
• Primitive types are automatic variables that are not references.
• The variables hold the value and its place on the stack, so it’s much more

efficient.

• Why primitive collections?
• Reduced memory usage
• Improved performance
• Eliminates the need to depend on multiple libraries – PCJ, Trove etc.

• What primitive collections are available in GSC?
• List, Set, Map, Stack, Bag

• For what all primitive types?
• All eight: boolean, byte, char, double, float, int, long, short

4/26/2014 © 2014 Goldman Sachs. All rights reserved.

Primitive Collections

0

5

10

15

20

25

Si
ze

 (M
b)

Elements

IntList

JDK ArrayList

GSC IntArrayList

Trove TIntArrayList

4/26/2014 © 2014 Goldman Sachs. All rights reserved.

Save Memory with Primitive Collections: IntList

• Do you use GS Collections today?
• Is there anything that keeps you from using GS

Collections in your code bases?
• What are our plans for Java 9/10 for the Java

Collections framework?
– Will anyone sponsor a JSR for Collections 2?
– Should GS sponsor a JSR for Collections 2?

• Should a Java Collections 2 implementation “Rock
Hard or Go Home”?
– Full primitive support, immutable containers, multimaps,

bags, bimaps, eager/lazy, serial/parallel, etc.

Questions for this group

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

Appendix

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

• GS Collections Class Hierarchy
• GS Collections Java 8 Code examples

GS Collections: Collection Hierarchy

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

GS Collections adds 30 interfaces to enhance the 5 basic JDK Collections interfaces

GS Collections: Map Hierarchy

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

GS Collections adds 12 interfaces to enhance the 3 basic JDK Map interfaces
Note: GS Collections Maps are RichIterable on their values

GS Collections: Multimap Hierarchy

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

GS Collections adds 22 interfaces to support different forms of Multimaps

GS Collections: PrimitiveIterable Hierarchy

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

GS Collections adds 16 interfaces x 8 primitive types
(boolean, byte, char, double, float, int, long, short)

GS Collections: ParallelIterable Hierarchy

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

Java 8 Streams

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

GSC Kata Example#1 w/ JDK 5-7

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

@Test
public void getCustomerNames()
{
 Function<Customer, String> fn = new Function<Customer, String>()
 {
 @Override
 public String valueOf(Customer customer)
 {
 return customer.getName();
 }
 };

 /**
 * Get the name of each of the company's customers.
 */
 MutableList<Customer> customers = this.company.getCustomers();
 MutableList<String> names = customers.collect(fn);
 MutableList<String> expectedNames =
 FastList.newListWith("Fred", "Mary", "Bill");
 Assert.assertEquals(expectedNames, names);
}

GSC Kata Example#1 w/ JDK 8

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

@Test
public void getCustomerNames()
{
 /**
 * Get the name of each of the company's customers.
 */
 MutableList<Customer> cs = this.company.getCustomers();
 MutableList<String> names = cs.collect(Customer::getName);

 MutableList<String> expected =
 FastList.newListWith("Fred", "Mary", "Bill");
 Assert.assertEquals(expected, names);
}

* Saved 8 lines of code with method reference *

GSC Kata Example#2 w/ JDK 5-7

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

@Test
public void filterOrderValues()
{
 MutableList<Order> orders = this.company.getMostRecentCustomer().getOrders();
 DoubleList filtered = this.company.getMostRecentCustomer()
 .getOrders()
 .asLazy()
 .collectDouble(Order.TO_VALUE)
 .select(DoublePredicates.greaterThan(1.5))
 .toSortedList();
 Assert.assertEquals(DoubleArrayList.newListWith(1.75, 372.5), filtered);
}

public class Order
{
 public static final DoubleFunction<Order> TO_VALUE = new DoubleFunction<Order>()
 {
 public double doubleValueOf(Order order)
 {
 return order.getValue();
 }
 };
 ...

GSC Kata Example#2 w/ JDK 8

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

@Test
public void filterOrderValues()
{
 DoubleList filtered = this.company.getMostRecentCustomer()
 .getOrders()
 .asLazy()
 .collectDouble(Order::getValue)
 .select(value -> value > 1.5)
 .toSortedList();

 Assert.assertEquals(
 DoubleArrayList.newListWith(1.75, 372.5),
 filtered);
}

* Saved 8 lines of code with method reference *

• Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

References

© 2014 Goldman Sachs. All rights reserved. 5/12/2014

