
Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Project	Panama	

	
	
	
March,	2019	

Status	update	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

A	rising	Bde	

•  Linear	algebra	computaBons	criBcal	for	machine	learning	
– E.g.	matrix	mulBplicaBons	(dot	products)	and	addiBons	

• Matrix	computaBons	are	embarrassingly	parallel!	
– GPUs	provide	acceleraBon	for	common	computaBons	(e.g.	cuBLAS)	

• Deep	learning	frameworks	support	GPUs	as	execuBon	backend	of	choice	
– Theano,	Tensorflow,	Spark,	Torch,	…	

• But	wait,	all	these	frameworks	rely	on	na+ve	libraries!	

2	

GPUs	and	deep	learning	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Going	naBve	

•  SomeBmes	you	just	have	to	“go	naBve”	
– Off-CPU	compuBng	(Cuda,	OpenCL)	
– Deep	learning	(Blas,	cuBlas,	cuDNN,	Tensorflow,	…)	
– Graphics	processing	(OpenGL,	Vulkan,	DirectX)	
– Others	(OpenSSL,	SQLite,	V8,	...)	

•  Languages/pla_orms	must	lower	the	ac/va/on	energy	required	to	do	so!	

3	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Java	NaBve	Interface	

4	

This	Photo	is	licensed	under	CC	BY-SA-NC	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	JNI	

5	

//Getpid.java	
public	class	Getpid	{	
			native	int	getpid();	
}	
	
//Client.java	
class	Client	{	
			public	static	void	main(String[]	args)	{	
						new	Getpid().getpid();	
			}	
}	

	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	JNI	

6	

Workflow	

javac	 libcso	Getpid	java	 Getpid	class	

unistd	h	 getpid	h	

getpidso	gcc/clang	getpid	c	user-wrihen	
generated	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	JNI	

//getpid.h	
#include	<jni.h>	
#include	<stdlib.h>	
	
#ifndef	_Included_GetPid	
#define	_Included_GetPid	
#ifdef	__cplusplus	
extern	"C"	{	
#endif	
/*	
	*	Class:					GetPid	
	*	Method:				getpid	
	*	Signature:	()I	
	*/	
JNIEXPORT	jint	JNICALL	Java_GetPid_getpid	
		(JNIEnv	*,	jobject);	
	
#ifdef	__cplusplus	
}	
#endif	
#endif	

	
7	

Gluing	all	the	framents	

//Getpid.java	
public	class	Getpid	{	
	
		static	{	
				System.loadLibrary("getpid");	
		}	
	
		native	int	getpid();	
}	
	
//Client.java	
class	Client	{	
			public	static	void	main(String[]	args)	{	
						new	Getpid().getpid();	
			}	
}	

	

//getpid.c	
#include	<unistd.h>	
#include	"GetPid.h"	
	
JNIEXPORT	jint	JNICALL	Java_GetPid_getpid	
		(JNIEnv	*env,	jobject	recv)	{	
			return	getpid();	
}	

	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Java	NaBve	Interface	

• Good:	Rich,	bidirec+onal	interop	between	Java	and	naBve	code	
• Bad:	No	support	for	modelling	off-heap	data	
– DIY	soluBons:	Unsafe,	ByteBuffer,	…	

• Ugly:	Convoluted	workflow	
– (Java)	users	must	know	how	to	write	(and	build!)	na/ve	code	

• Result:	wriBng	naBve	bindings	in	Java	is	hard!	
– Many	things	can	go	out	of	sync	as	naBve	libraries	are	updated	

8	

Works,	but…	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

When	JNI	fails	

9	

Java	na+ve	bindings	fall	behind	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Enter	Panama	

10	

The	vision	

“If	non-Java	programmers	find	some	library	
useful	and	easy	to	access,	it	should	be	similarly	
accessible	to	Java	programmers”	

John	Rose,	JVM	Architect	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Panama	

•  Idea:	model	foreign	libraries	as	ordinary	Java	interfaces	
– Foreign	interfaces	can	be	generated	by	tools	
– ImplementaBons	generated	on-the-fly	(binding)		

• Rich	API	to	model	off-heap	data	
– Layout,	Pointer,	Array,	Scope,	…	

• Result:	no	more	naBve	methods!	

11	

The	approach	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

12	

Library	as	interfaces	

	
	
	
	
	
	
	
	
	
	
_lib.getpid();	

•  Foreign	funcBons	are	just	methods	
calls	on	some	library	object	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

13	

Library	as	interfaces	

	
	
	
	
	
	
	
var	_lib	=	Libraries.bind(

	 						MethodHandles.lookup(),	
																		Getpid.class);	
_lib.getpid();	

	
•  Foreign	funcBons	are	just	methods	
calls	on	some	library	object	
•  Library	objects	are	obtained	by	
binding	a	library	interface	

	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

14	

Library	as	interfaces	
	
@NativeHeader	
interface	Getpid	{	
				@NativeFunction(“()i32”)	
				int	getpid();	
}	
	
	
var	_lib	=	Libraries.bind(

	 						MethodHandles.lookup(),	
																		Getpid.class);	
_lib.getpid();	

•  Foreign	funcBons	are	just	methods	
calls	on	some	library	object	
•  Library	objects	are	obtained	by	
binding	a	library	interface	
•  Library	interfaces	contain	metadata	
– E.g.	to	describe	naBve	layouts	

	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	JNI	

15	

Workflow	

javac	 libcso	Getpid	java	 Getpid	class	

unistd	h	 getpid	h	

getpidso	gcc/clang	getpid	c	user-wrihen	
generated	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

16	

Workflow	

javac	 libcso	Getpid	java	 Getpid	class	

user-wrihen	
generated	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Off-heap	access	

• NaBve	pointers	are	modelled	with	generic	class	Pointer<X>	
– Pointer<X>	=	address	+	layoutpointee	+	carrierX	

• Basic	operaBons	
– Offset,	cast,	dereference	(get/set),	iteraBon	

• Pointers	lifecycle	managed	by	Scope	
– Cannot	dereference	a	pointer	whose	owning	scope	has	been	closed!	

• NaBve	arrays	are	modelled	with	generic	class	Array<X>	
– Array<X>	=	Pointer<X>	+	size	

17	

pointers	and	arrays	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Off-heap	access	

18	

Pointers	and	arrays	

@NativeHeader	
interface	Strings	{	
				@NativeFunction(“u64:u8)i32”)	
				int	strlen(Pointer<Byte>	buf);	
}	

…	

var	_lib	=	Libraries.bind(
	 						MethodHandles.lookup(),	

																		Strings.class);	
try	(var	scope	=	Scope.newNativeScope())	{	
			var	strPtr	=	scope.allocateCString(“Hello”);	
			_lib.strlen(strPtr);	
}	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Off-heap	access	

19	

Pointers	and	arrays	

@NativeHeader	
interface	Strings	{	
				@NativeFunction(“u64:u8)i32”)	
				int	strlen(Pointer<Byte>	buf);	
}	

…	

var	_lib	=	Libraries.bind(
	 						MethodHandles.lookup(),	

																		Strings.class);	
try	(var	scope	=	Scope.newNativeScope())	{	
			var	strPtr	=	scope.allocateCString(“Hello”);	
			_lib.strlen(strPtr);	
}	

•  Scope	+	try-with-resources	
– 	delimit	code	blocks	which	can	safely	
access	off-heap	memory	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Off-heap	access	

20	

Pointers	and	arrays	

@NativeHeader	
interface	Strings	{	
				@NativeFunction(“u64:u8)i32”)	
				int	strlen(Pointer<Byte>	buf);	
}	

…	

var	_lib	=	Libraries.bind(
	 						MethodHandles.lookup(),	

																		Strings.class);	
try	(var	scope	=	Scope.newNativeScope())	{	
			var	strPtr	=	scope.allocateCString(“Hello”);	
			_lib.strlen(strPtr);	
}	

•  Scope	+	try-with-resources	
– 	delimit	code	blocks	which	can	safely	
access	off-heap	memory	

•  Scope	provides	many	useful	
allocaBon	helpers	
– allocateCString,	allocateArray,	…	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Panama	

• Panama	interfaces	to	access	foreign	funcBons/data	w/o	naBve	code!		
• But,	wriBng	annotated	interfaces	is	(sBll)	relaBvely	hard	and	error	prone!	
– Interface	metadata	contains	pla8orm-specific	layout	descripBons	

• Real	world	example	(Tensorflow)	
– 	161	funcBons,	23	structs,		50	constants,	2	callbacks	
– 	Total:		26	annotated	interfaces!	

• Can	we	do	beher?	

21	

Scorecard	so	far	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Jextract	

22	

This	Photo	is	licensed	under	CC	BY-SA	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Jextract	

• Goal:	auto-generate	bundles	of	annotated	interfaces	from	a	C	header	file	
– The	generated	jar	bundle	contains	headers,	structs,	callbacks	interfaces	

•  Jextract	parses	headers	(clang),	infers	layouts,	picks	Java	carrier	types	
– The	generated	bundle	is	pla8orm	dependent!	

•  Tested	with	many	real	world	libraries	
– Tensorflow,	BLAS/LAPACK,	OpenCL,	Clang,	OpenGL,	Sqlite,	Python,	…	
– hhp://hg.openjdk.java.net/panama/dev/raw-file/foreign/doc/panama_foreign.html	

23	

Tools	sweet	tools	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

24	

Workflow	

javac	 libcso	Getpid	java	 Getpid	class	

user-wrihen	
generated	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

25	

Workflow	w/	jextract	

jextract	 libcso	unistd	h	 unistd	jar	

user-wrihen	
generated	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

26	

Workflow	w/	jextract	

jextract	 libcso	unistd	h	 unistd	jar	
unistd.class	
unistd$gid_t.class	
unistd$intptr_t.class	
unistd$off_t.class	
unistd$pid_t.class	
unistd$socklen_t.class	
unistd$ssize_t.class	
unistd$uid_t.class	
unistd$useconds_t.class	user-wrihen	

generated	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

27	

Workflow	w/	jextract	

jextract	 libcso	unistd	h	 unistd	jar	
unistd.class	
unistd$gid_t.class	
unistd$intptr_t.class	
unistd$off_t.class	
unistd$pid_t.class	
unistd$socklen_t.class	
unistd$ssize_t.class	
unistd$uid_t.class	
unistd$useconds_t.class	

...	
int	getpid();	
int	getppid();	
int	getpgrp();	
int		__getpgid(int);	
int	getpgid(int);	
int	setpgid(int,	int);	
int	setpgrp();	
...	user-wrihen	

generated	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

28	

@NativeHeader(declarations=	
				“getpid=()i32”)		
interface	Getpid	{	
				int	getpid();	
}	

…	

var	_lib	=	Libraries.bind(
	 						MethodHandles.lookup(),	

																		Getpid.class);	
_lib.getpid();	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Getpid	in	Panama	

29	

Closing	the	loop	w/	jextract	

	
	
	
	
import	static	stdlib.unistd_h.*;	

…	

getpid();	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Performances	

30	

This	Photo	is	licensed	under	CC	BY-SA	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Performances	

31	

Getpid	

53	

55	

57	

59	

61	

63	

65	

67	

69	

M
op

/s
ec
(t
hr
ou

gh
pu

t)
	

Intel(R)	Xeon(R)	CPU	E5-2665	@	2.40GHz,	16	cores,	32G	RAM	

JNI	 Panama	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Performances	

32	

getpid	reloaded	(don’t	try	this	at	home…	yet!)	

0	

50	

100	

150	

200	

250	

300	

M
op

/s
ec
(t
hr
ou

gh
pu

t)
	

Intel(R)	Xeon(R)	CPU	E5-2665	@	2.40GHz,	16	cores,	32G	RAM	

JNI	 Panama	 Panama	(linkToNaBve	-	EXPERIMENTAL)	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Performances	

33	

qsort	

285	

305	

325	

345	

365	

385	

405	

Ko
p/
se
c(
th
ro
ug
hp

ut
)	

Intel(R)	Xeon(R)	CPU	E5-2665	@	2.40GHz,	16	cores,	32G	RAM	

JNI	 Panama	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Performances	

34	

qsort	reloaded	(upcalls	are	s+ll	expensive)	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

M
op

/s
ec
(t
hr
ou

gh
pu

t)
	

Intel(R)	Xeon(R)	CPU	E5-2665	@	2.40GHz,	16	cores,	32G	RAM	

JNI	 Panama	 JNI	(no	upcalls)	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Panama	

•  Ease	of	use:	from	header	files	to	naBve	bundles	with	jextract	
• Rich	API	provides	seamless	integraBon	with	naBve	code	
– much	of	the	JNI	boilerplate	can	now	be	expressed	in	Java!	

• A	safer	alternaBve	to	JNI	
– Scope	API	manages	resource	lifecycles	(pointers,	structs,	callbacks,	…)	

• Room	for	performance	improvement	is	huge	
– Reduce	latency	of	naBve	calls,	hoist	naBve	transiBons	out	of	loops,	...	

• Not	just	for	C!	

35	

Scorecard	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Panama	status	

•  Early	access	binaries	(macOS/Linux/Windows	x64)	
– hhps://jdk.java.net/panama/	

• Many	community-extracted	bindings	
– Vulkan,	FFTW,	Wayland,	Cuda,	…	

• Community-led	ARM	port	effort	is	in	the	works	
•  Extensive	talks	with	Intel	(Steve	Dohrmann)	to	support	NVM	

36	

Copyright	©	2019,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

Panama	Roadmap	

•  Step	1:	Low-level,	foreign	data	support	
– MemoryAddress,	MemoryScope,	Layout	API,	VarHandle	changes	

•  Step	2:	Low-level	foreign	funcBon	support	
– SystemABI,	VM	changes	to	support	“naBve”	method	handles	(aka	LinkToNaBve)	

•  Step	3:	High	level	C	interop	support	
– Pointer<X>,	Array<X>,	Struct<X>,	binder,	jextract	tool	

37	

Version	2.0	

