
Deprecation Overview

Stuart W. Marks aka “Dr Deprecator”
Project Lead, JDK Core Libraries
August 10, 2021

Deprecation: What and Why?

•  Deprecation is a late stage in the life cycle of a feature
•  at some point a feature might become old, obsolescent, and disused
•  if features were added and not removed, the size and complexity of a system would grow without

bound
•  Old, obsolete features don’t just sit there, bothering no one

•  they impose costs on the ongoing development and maintenance of a system
•  more code, docs, tests to be kept up to date
•  time to build, run tests, diagnose test failures, fix and maintain tests
•  surface area for security vulnerabilities

•  Purposes of deprecation
•  notify developers of a future change (removal) and alert need for migration
•  collect feedback from community about migration, alternatives, etc.

•  Deprecation can, but does not necessarily imply that the feature will be removed at some point

2 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

History of Deprecation in Java SE

•  JDK 1.1 – 1997
•  javadoc tag @deprecated (“little-d deprecated”)
•  unusual: javac parses the contents of a comment and emits a classfile attribute
•  classfile attribute used for issuing warnings to consumers of the class
•  an early form of annotation

•  Java SE 5.0 – 2004
•  annotations feature added to the Java language, along with several defined annotations
•  the @Deprecated annotation (“big-D deprecated”)
•  annotation written to class file, available at runtime via reflection
•  some overlap with javadoc’s @deprecated tag, but they serve distinct purposes

3 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

/**

 * The {@code Compiler} class is provided to support Java-to-native-code

 * compilers and related services. By design, the {@code Compiler} class does

 * nothing; it serves as a placeholder for a JIT compiler implementation.

 * If no compiler is available, these methods do nothing.

 *

 * @deprecated JIT compilers and their technologies vary too widely to

 * be controlled effectively by a standardized interface. As such, many

 * JIT compiler implementations ignore this interface, and are instead

 * controllable by implementation-specific mechanisms such as command-line

 * options. This class is subject to removal in a future version of Java SE.

 *

 * @author Frank Yellin

 * @since 1.0

 */

@Deprecated(since="9", forRemoval=true)

public final class Compiler {

4 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

History of Deprecation in Java SE

•  Unclear, contradictory definition and usage in Java SE
•  deprecation is for dangerous features that should not be used (Thread.suspend)
•  deprecation is for API cleanup (AWT Component hide/show/setVisible)
•  there was no official documents, clarification, or discussion on this topic

•  Nothing much happened for about 13 years...
•  This resulted in confusion in the Java developer community

•  “Don’t use that API; it’s deprecated so it might be removed in the future.”
•  “Don’t worry, (Sun|Oracle) has never removed anything from Java and never will.”

•  Problem: lack of clarity over how developers should respond when encountering a deprecated API

5 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

JEP 277 – Enhanced Deprecation

•  Delivered in Java 9 – 2017
•  authored by your speaker
•  added two annotation methods (attributes)

 @Deprecated(forRemoval=true, since="9")

•  Most work in JEP 277 is conceptual
•  filled in holes, clarified, strengthened existing concepts
•  added a new JLS mandatory warning: removal warning
•  vocabulary: “ordinary” versus “terminal” deprecation
•  message: certain things indeed will be removed from Java SE

6 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

“Yes, we really intend
to remove this.” just informational

Effects of Deprecation

•  Compile-time warning
•  ordinary deprecations generate “deprecation” warnings
•  terminal deprecations generate “removal” warnings (new in Java 9)
•  warnings can be controlled from the javac command line or with the @SuppressWarnings

annotation at the point of use
•  Highlighted text emitted in javadoc
•  API maintainers should provide additional information in the @deprecated javadoc tag

•  replacements (if any); rationale; references
•  Annotation recorded in class file

•  available for static analysis (jdeprscan tool)
•  also available at runtime, via reflection

7 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

8 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

Deprecation is a Java SE Specification Change

•  Annotations are part of class, method, field declarations
•  they are as much a part of the specification as class name, method name, parameter types,

return types, etc.
•  applies to addition or removal of the annotation
•  applies to a change in an attribute (e.g., change forRemoval from false to true)

•  Deprecations go through the same process as other APIs
•  specification changes are code, so they go through code review
•  all specification changes go through CSR process
•  significant changes have JEPs filed for them

•  All spec changes (with or without JEPs) are fed into the Java SE JSR specification

9 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

Deprecation Policy

•  Some policy covered in JEP 277
•  terminal deprecation must appear in a Java SE release before the API element is removed from

Java SE
•  Typically, we’ve followed an “at least one year” (two six-month Java SE releases) policy
•  Small, safe things can have a shorter notice period

•  no-arg constructors of java.lang.reflect.Modifier and java.lang.invoke.ConstantBootstraps
•  CSR JDK-8230724 terminal deprecation (Java 14)
•  CSR JDK-8235548 removal (Java 15)

•  More-significant things benefit from a longer notice period and JEPs
•  CMS GC terminally deprecated in Java 9 (JEP 291), removed in Java 14 (JEP 363)
•  Nashorn terminally deprecated in Java 11 (JEP 335), removed in Java 15 (JEP 372)

10 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

Deprecation Policy Questions

•  Who decides...
•  whether a feature should be deprecated?
•  when a feature should be deprecated?
•  when a feature should be removed?
•  whether there should be some kind of replacement for the deprecated feature?
•  etc.

•  Answer: the feature’s maintainer
•  most decisions are aspects of API design, which is also up to the maintainer of the feature
•  the right decision depends highly on context
•  deprecation/removal occurs infrequently across diverse features of different granularity
•  difficult to generalize any policies
•  community comments and customer feedback are a big part of deprecation decisions
•  Dr Deprecator does not make all deprecation decisions (though he is often consulted)

11 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

JCP Notification

•  All specification changes tracked by CSRs
•  CSR = Compatibility and Specification Review
•  Java 17 Dashboard: https://bugs.openjdk.java.net/secure/Dashboard.jspa?selectPageId=19801

•  Significant specification changes also have JEPs
•  JSR Expert Group + EC notified of JEP status changes
•  JEP 411 (Security Manager) => Candidate, April 2021 email
•  JEP 411 (Security Manager) => Proposed To Target, May 2021 email

•  Published draft JSR specifications include terminal deprecations and removals
•  http://cr.openjdk.java.net/~iris/se/17/latestSpec/

12 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

CSR Dashboard

13 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

Java SE 17 Specification Draft

14 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

15 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

Public Notification

•  JEP publication (for significant deprecations or removals)
•  mailing list announcement, CSR, code review
•  Twitter
•  blog posts
•  podcast episodes
•  conferences and user group talks
•  EA builds
•  direct contact with library and tool maintainers
•  Quality Outreach Program
•  full-page ad in New York Times

Notification is never good enough, since some people are always surprised....

16 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

Conclusion

•  Summary
•  keeping the platform healthy
•  new features introduced, obsolete features retired
•  most of this isn’t about technology; it’s communication with developers

•  Links
•  Java 17 CSR dashboard

•  https://bugs.openjdk.java.net/secure/Dashboard.jspa?selectPageId=19801

•  JSR spec drafts, sections 7 and 8
•  http://cr.openjdk.java.net/~iris/se/17/latestSpec/

•  JEP 277 Enhanced Deprecation
•  https://openjdk.java.net/jeps/277

•  JEP index (JEP 0) – search on page for “deprecate” or “remove”
•  https://openjdk.java.net/jeps/0

17 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

Thank you!

Stuart Marks (aka Dr Deprecator)
stuart.marks@oracle.com

18 Copyright © 2021, Oracle and/or its affiliates 2021-08-10

