
Java Daemon API JSR / tk / 29 November 2000 / Page 1(5)

Java Daemon API Specification Request
Thomas Kopp, 29 November 2000

Table of Content

1. Introduction ... 2
2. Daemon Life Cycle... 2
3. Daemon Interfaces... 2
4. Daemon States... 3
5. Synchronization Issues .. 4
6. Security Issues ... 4
7. Daemon/Container Contract ... 4
8. Implementation Issues ... 5
9. Reference Implementations .. 5

Java Daemon API JSR / tk / 29 November 2000 / Page 2(5)

1. Introduction

Enterprise computing is based on server processes. The Java language offers a wide range of
APIs for implementing server processes such as Java servlets or enterprise Java beans. These
frameworks always rely on containers for hosting enterprise components. Containers are mostly
realized as modules of independently running system level services as database systems or web
servers, which have been written in a native platform-specific language or in the Java language.

Currently, there is a gap for deploying and running system level services written in the Java
language in a uniform fashion. On Unix platforms, the problem can be solved by manually writing
a suitable rc init script for calling the Java application launcher in order to start or stop a Java
service. On Windows platforms, the problem is harder to solve, e.g. by writing a native wrapper
application, which supplies a functionality similar to an rc init script.

This proposal introduces Java daemons, which should fill the gap. Java daemons are
independently running system level services written in the Java language according to a daemon
API and hosted from daemon containers. A daemon container may be written in a native
language or in the Java language. In order to do so, the Java daemon framework also provides
for an SPI to implement daemon containers. In addition, a simple command line utility similar to
the Java application launcher is supplied on each platform for installing and running Java
daemons in a uniform fashion.

The behavior and installation of a Java daemon is independent of the current host platform. Thus,
a developer should no longer work around platform-specific details for deploying and running
system level services written in Java.

2. Daemon Life Cycle

In order to bring a daemon in a state for fulfilling its service at runtime, it has to be initialized.
Initialization comprises tasks like reading configuration parameters or allocating remote
resources. After initialization a daemon may run until it is told to terminate servicing or until it runs
in an unrecoverable error, which both result in the destruction of the current daemon instance for
releasing allocated resources again.

During servicing a daemon is in a so-called active state. Otherwise it is considered to be inactive,
meaning that no service can be supplied by a daemon when it is inactive.

Apart from this scenario, there may be daemons, which once being active, can be stopped and
re-started again in order to re-load parameters or to provide for other administration purposes
without the need to run through the whole initialization cycle.

Thus, some daemons may be temporarily paused. A daemon is not paused when it is active or
when it has been shutdown. As an example, a web server may be paused for saving log files,
which requires flushing the log buffers. Saving log files, however, would result in unnecessarily
resetting the web server’s volatile resource cache when completely shutting the server down.
Temporarily stopping the service would be a suitable way for solving problems like this.

3. Daemon Interfaces

Several interfaces can be used for realizing daemons.

The API consists of the Daemon and Pausable interfaces, which supply hooks being called
during life cycle changes described in the previous section. The former interface has to be

Java Daemon API JSR / tk / 29 November 2000 / Page 3(5)

implemented by all daemons, the latter can optionally be implemented by daemons that can
temporarily stop and re-start.

The SPI consists of the DaemonControl and PausableControl interfaces for managing a
daemon’s life cycle accordingly. In addition to the life cycle controlling interfaces, there is another
SPI for controlling resources used by a daemon. This DaemonContext interface defines methods
for setting configuration attributes and other resources.

Available resources can be accessed by a daemon using the complementary DaemonConfig API.
In addition, there are Logging and ExtendedLogging interfaces for writing output to a log resource
if applicable.

Life cycles may be observed by other components, e.g. for handling resource problems or for
notifying administration requirements. Thus, there is also a DaemonListener interface for life cycle
change notifications.

All interfaces are linked together by the GenericDaemon, which is the base class for all Java
daemons. This base class is extended by the PausableDaemon class, which supplies extended
functionality in order to be sub-classed by daemons that might temporarily stop.

A DaemonException is a new subclass of Exception for indicating a problem during daemon
initialization or startup.

4. Daemon States

The state of a daemon is changed using a control method called via one of the above-cited
control interfaces. Life cycle management comprises the init and destroy methods for daemon
initialization and destruction and the stop and start methods for temporarily stopping and re-
starting. The latter two methods are also called when destroying or initializing pausable daemons
respectively.

State updates are performed via the daemon container. In addition, a daemon can also manage
state itself but it can only switch from active to pause or inactive states. A complementary control
action is required for going the other way again. For managing its own state a daemon uses the
down and pause methods.

All state changes are notified via the listener interface if applicable.

The following chart describes the various states and transitions with italic labeling indicating
transitions caused by control actions and bold face labeling indicating transitions invoked by the
daemon itself.

• ordinary daemons

Calling down does not interrupt a running init method call but it prevents the daemon from
reaching the active state. Since down may be called from a separate thread started during init
this situation may happen in practice.

inactive active
init()

destroy()

down()

Java Daemon API JSR / tk / 29 November 2000 / Page 4(5)

• pausable daemons

Calling pause does not interrupt a running start method call but it prevents the daemon from
reaching the active state. Since pause may be called from a separate thread started during
start this situation may happen in practice.

Notes:

• The pause and down methods result in state updates without passing the corresponding stop
or destroy methods. Life cycle hooks are only passed when state is managed via the control
interface.

• Reaching a pause state is only notified via a listener when the daemon was active before.

As an implementation detail, the pause and down methods are postponed until the end of a
running control action, i.e. state computation after a control action performed is also based on
pause or down calls occurred since the begin of the corresponding control action.

5. Synchronization Issues

Most daemon interfaces are singletons because state is kept in the corresponding daemon
instance itself or in a one-to-one relationship to that instance. Access to these singletons is hence
synchronized via the basic daemon instance.

Calling life cycle methods via the DaemonControl interface is synchronized via the current control
instance.

Life cycle updates are synchronized via the current DaemonEventHandler instance, which
controls bound listeners. Updates are not synchronized together with life cycle control actions
because a daemon managing its own life cycle could be in deadlock conflict with control methods
called from a different thread.

6. Security Issues

There are currently no specific security issues for Java daemons beyond standard Java security.

7. Daemon/Container Contract

A daemon container supplies attributes for a daemon and manages life cycles via the above-cited
interfaces. In addition it can supply a logging resource for a daemon or make use of the daemon
listener interface for watching daemon life states.

inactive paused
init()

destroy()

down()

active

pause()

start()

stop()

down()

Java Daemon API JSR / tk / 29 November 2000 / Page 5(5)

Attributes should only be modified when the daemon is inactive or in pause state. This frees a
daemon from the obligation to synchronize access to its DaemonConfig attribute name collection
(cf. API documentation for details).

A daemon should use the pause or down methods only for service stops or error halts if no useful
servicing is possible without an administration action performed. Thus, life state management
should be left up to the controlling instance, meaning the container/daemon relationship is a
master/servant relationship as long as the daemon can do what it has been told to do.

The Pausable interface should only be implemented by daemons that can react in a suitable way
on start or stop methods calls. Thus, all daemon life cycle methods of the basic daemon classes
are defined as abstract methods (cf. API documentation for details).

If a daemon decides to call pause or down, a possibly running init, start, stop or destroy method
will not terminate prior to reach its end. This rule does not apply if a daemon throws a
DaemonException during initialization or startup.

A normal daemon behavior would consist in creating a separate thread during initialization or
startup and continue running in that thread until it is paused or shutdown via a control method (cf.
examples for details).

8. Implementation Issues

The Java daemon API could be made available via a simple command line launcher and installer
(cf. reference implementation for details). This installer would provide for deploying Java
daemons including configuration attribute setting in a uniform fashion on each JDK platform. It
would also provide for hosting daemons at runtime. Thus, this utility would be similar to the
current Java launcher.

Daemon containers, which offer a richer functionality, could be realized using the Java language
on top of the basic JDK level daemon containers, i.e. high level containers would be implemented
as Java daemons themselves on behalf of the daemon SPI.

High-level containers could be supplied by third-party vendors and would not be part of the basic
daemon framework. They might supply features such as

• graphical user interfaces for managing daemon state of whole daemon groups
• graphical user interfaces for managing daemon listeners and daemon dependencies
• graphical user interfaces for watching daemons and scheduling timer driven daemons
• switchboards for basic Java services like RMI registry, remote compilers or other
• remote administration interfaces for distributed daemons linked via network protocols
• load balancing or messaging utilities for distributed daemons

9. Reference Implementations

Reference implementations for the basic JDK level utilities would use platform-specific features if
applicable. They would have to make a maximum effort for supplying a uniform Java-like interface
and using different platform-specific features for realizing this interface. They would even have to
emulate platform-specific features if missing for realizing a basic daemon container.

As an example an NT reference installation would make use of the NT service layer. A Unix
reference installation would supply a utility for automatically generating rc init scripts and handling
signals supplied by these scripts for managing daemons.

